New observation strategies for the solar UV spectral irradiance
نویسندگان
چکیده
Many applications in space weather and in space situational awareness require continuous solar spectral irradiance measurements in the UV, and to a lesser degree in the visible band. Most space-borne solar radiometers are made out of two different parts: (i) a front filter that selects the passband and (ii) a detector that is usually based on silicon technology. Both are prone to degradation, which may be caused either by the degradation of the filter coating due to local deposition or to structural changes, or by the degradation of the silicon detector by solar radiative and energetic particle fluxes. In this study, we provide a theoretical analysis of the filter degradation that is caused by structural changes such as pinholes; contamination-induced degradation will not be considered. We then propose a new instrumental concept, which is expected to overcome, at least partially, these problems. We show how most of the solar UV spectrum can be reconstructed from the measurement of only five spectral bands. This instrumental concept outperforms present spectrometers in terms of degradation. This new concept in addition overcomes the need for silicon-based detectors, which are replaced by wide band gap material detectors. Front filters, which can contribute to in-flight degradation, therefore are not required, except for the extreme-UV (EUV) range. With a small weight and a low telemetry, this concept may also have applications in solar physics, in astrophysics and in planetology.
منابع مشابه
Technical guide to Set Up a Spectral Solar Direct Normal Irradiance Permanent Station: Study Area- Hannover, Germany
The spectral Direct Normal Irradiance (SDNI) is a basic radiometric quantity from which many other quantities can be derived. It provides not only information about the spectral and distribution of the direct solar radiation reaching a particular location. Accurate knowledge about the spectral direct irradiance shall enable us to gain new scientific results in the: determination of cloud effect...
متن کاملMonitoring the solar UV irradiance spectrum from the observation of a few passbands
Context. The solar irradiance in the UV is a key ingredient in space weather applications; however, because of the lack of continuous and long-term observations, various indices are still used today as surrogates for the solar spectral irradiance. Aims. As an alternative to current spectrometers we use a few radiometers with properly chosen passbands and reconstruct the solar spectral irradianc...
متن کاملQuality assessment of solar UV irradiance measured with array spectroradiometers
The reliable quantification of ultraviolet (UV) radiation at the earth’s surface requires accurate measurements of spectral global solar UV irradiance in order to determine the UV exposure to human skin and to understand long-term trends in this parameter. Array spectroradiometers (ASRMs) are small, light, robust and cost-effective instruments, and are increasingly used for spectral irradiance ...
متن کاملCreation of a Composite Solar Ultraviolet Irradiance Data Set
Characterization of long-term solar ultraviolet (UV) irradiance variations is important for understanding the radiative forcing of Earth’s atmosphere. Extending such a characterization to multidecadal time scales requires the merging of multiple satellite data sets. Currently available irradiance data sets show both absolute offsets and time-dependent differences that vary between spectral rang...
متن کاملImproved sky imaging for studies of enhanced UV irradiance
A recent World Meteorological Organisation report discussed the importance of continued study of the effect of clouds on the solar UV radiation reaching the earths surface. The report mentions that the use of all-sky imagery offers the potential to understand and quantify cloud effects more accurately. There are an increasing number of studies investigating the enhancement of surface solar, UV ...
متن کامل